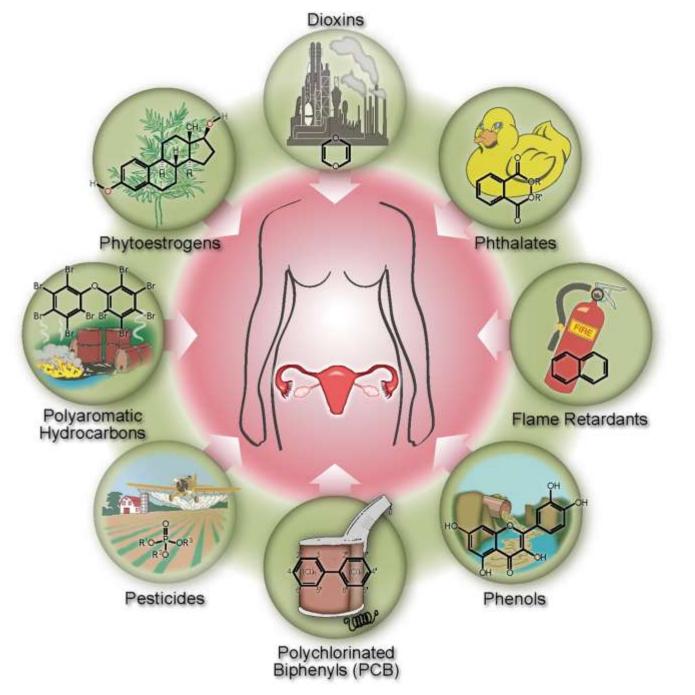
Building a search engine to find environmental exposures associated with disease and health

Epidemiological evidence from average and high-risk populations

Tamarra James-Todd, PhD, MPH

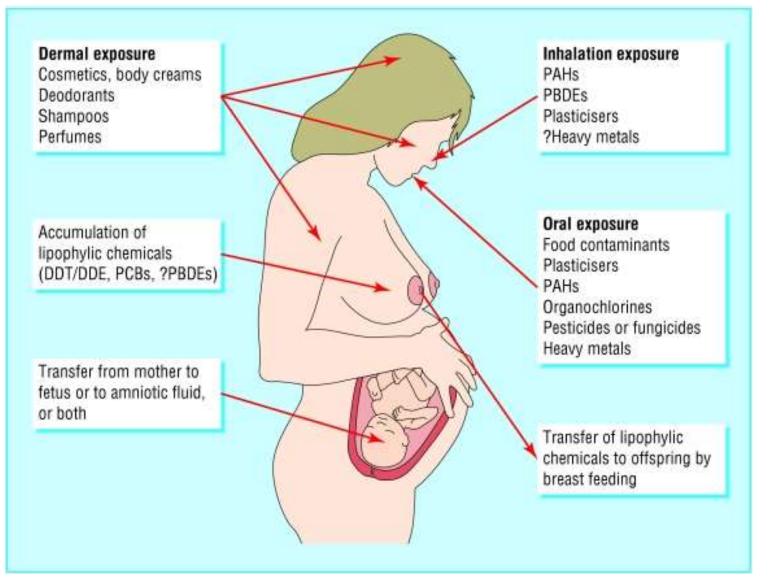
Mark and Catherine Winkler Assistant Professor of Environmental Reproductive and Perinatal Epidemiology Departments of Environmental Health & Epidemiology Harvard T.H. Chan School of Public Health

May 6, 2017

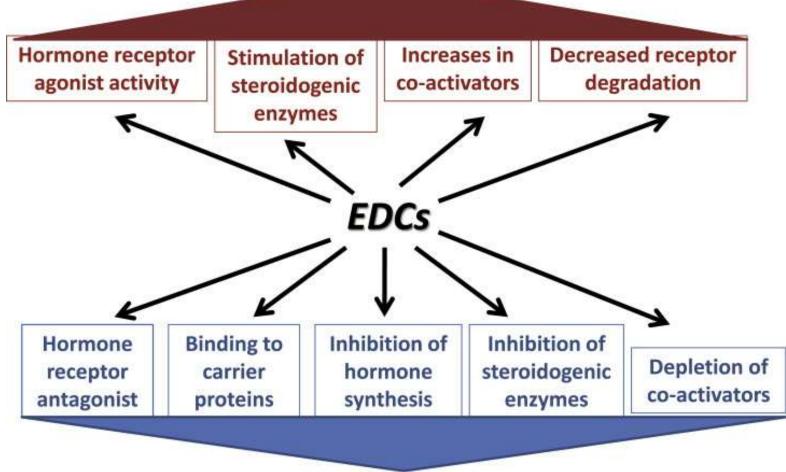

Overview

Goal = This work needs to be done!

- Overview of endocrine disrupting chemicals (EDCs)
- Background on associations between EDCs and pregnancy health
- Example of specific EDC and pregnancy complication
 - Average risk
 - Higher risk (women seeking care at a fertility center)
- Next steps toward improving research and informing clinical care in environmental and pregnancy health


What is an environmental endocrine disruptor?

"An exogenous substance or mixture that alters function(s) of the endocrine system and consequently causes adverse health effects in an intact organism, or its progeny, or (sub) populations" WHO, 2013


Grindler et al., DOI: 10.1371/journal.pone.0116057, CC BY 3.0

Routes of exposure

Mechanisms of Endocrine Disruption

STIMULATION OF HORMONAL PATHWAYS

INHIBITION OF HORMONAL PATHWAYS

Cooke, et al., Haschek and Rousseaux's Handbook on Toxicologic Pathology, 2013

EDCs and pregnancy health

Once pregnant, ~25% of pregnancies in the United States have one of these 4 complications

Higher phthalate exposure associated with: -~20% decrease in antral follicle count -~3-fold increased risk of pregnancy loss Infertility Higher phthalate exposure associated with: -2-fold increased odds of preterm birth -lower birth weight Preterm birth and SGA

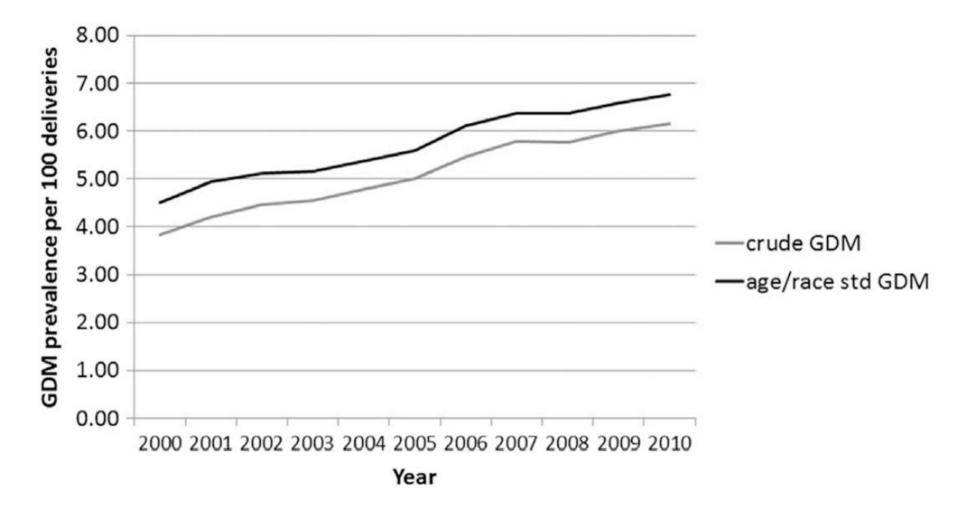
Higher phthalate and BPA exposure associated with: -50% to 2-fold increased risk of preeclampsia

Preeclampsia

Higher phthalate and BPA exposure associated with: -~10-12 mg/dL higher glucose -Excessive gestational weight

gain

Gestational diabetes

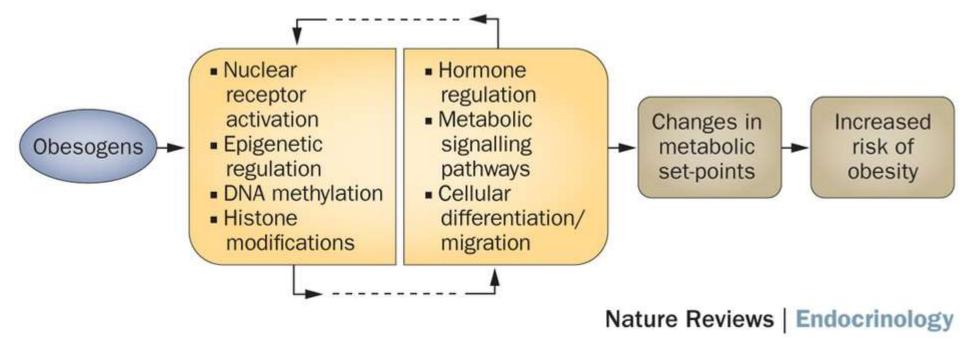

PHTHALATES AND GESTATIONAL DIABETES:

EXAMPLES FROM AVERAGE AND HIGH RISK POPULATIONS

Prevalence of GDM

Bardenheier, Am J Prev Med, 2015

GDM Risk Factors



An example: Obesogens as EDCs

Phthalates, Obesity, Insulin Resistance & Diabetes

Research

2007

Concentrations of Urinary Phthalate Metabolites Are Associated with Increased Waist Circumference and Insulin Resistance in Adult U.S. Males

Richard W. Stahlhut,¹ Edwin van Wijngaarden,¹ Timothy D. Dye,^{1,2} Stephen Cook,³ and Shanna H. Swan⁴

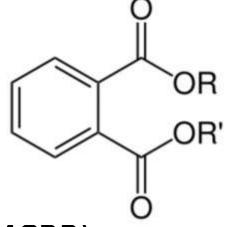
¹Department of Community and Preventive Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; ²Department of Research and Evaluation, Axios International, Paris, France; ³Department of Pediatrics, and ⁴Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA

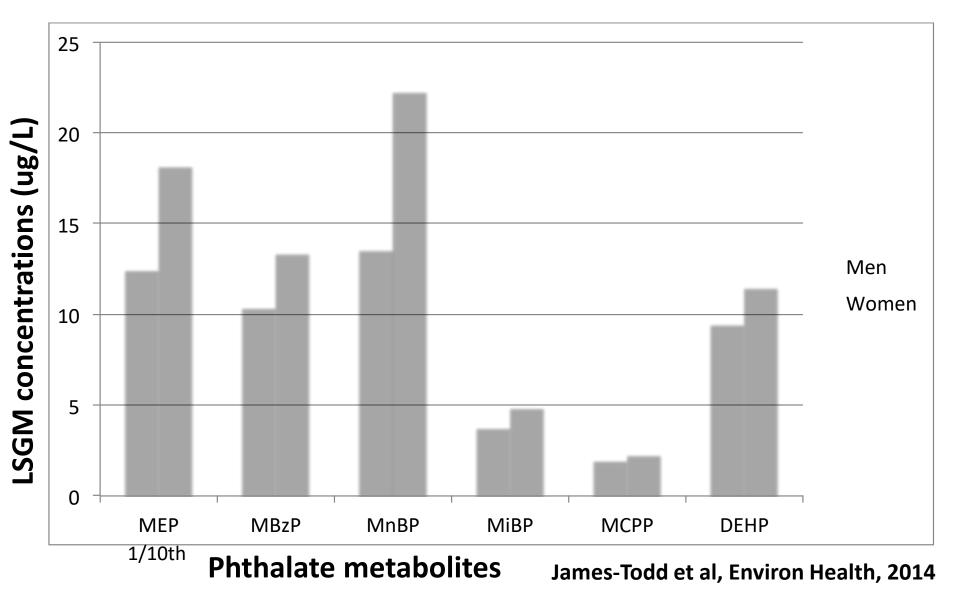
Environmental Health

Research

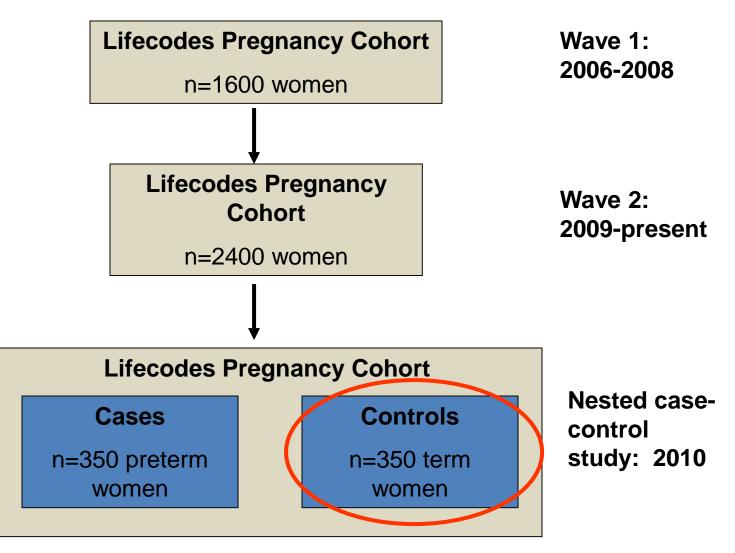
Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: a cross-sectional study of NHANES data, 1999–2002

Elizabeth E Hatch*1, Jessica W Nelson2, M Mustafa Qureshi3, Janice Weinberg4, Lynn L Moore3, Martha Singer3 and Thomas F Webster2


Phthalates


- Ubiquitous—75% of U.S. population has detectable levels
- Plasticizers, solvents, and lubricants
- Ingested, inhaled, and absorbed through skin

Phthalate metabolites of Interests:

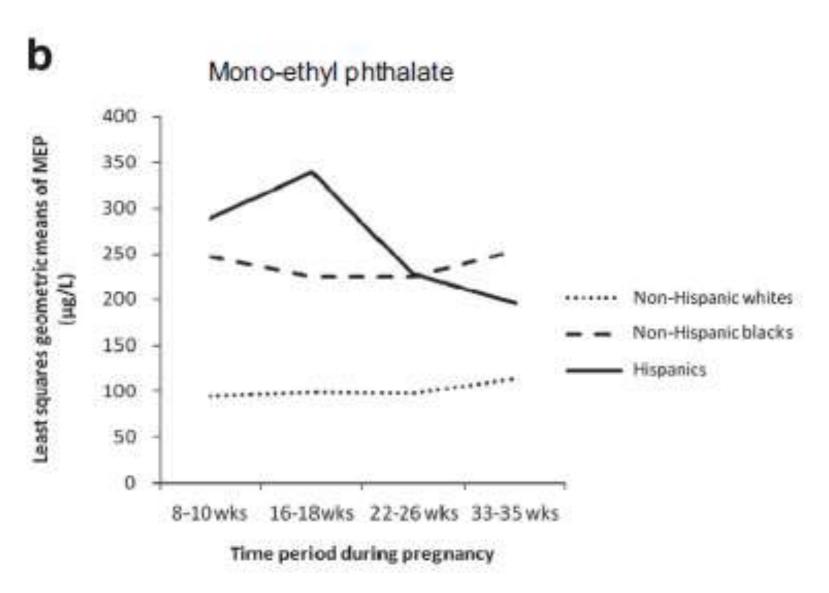

- Mono-ethyl phthalate (MEP)
- Mono-n-butyl phthalate (MBP)
- Mono-isobutyl phthalate (MiBP)
- Mono-benzyl phthalate (MZP)
- Mono-(3-carboxypropyl) phthalate (MCPP)
- Monomethyl phthalate (MMP)
- Mono-(2-ethyl)-3-hexyl phthalate (MEHP)
- Mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP)
- Mono-2-ethyl-5-oxohexyl phthalate (MEOHP)

Phthalate Exposure by Sex (NHANES 1999-2010)

Average risk population: Lifecodes Pregnancy Cohort (BWH)

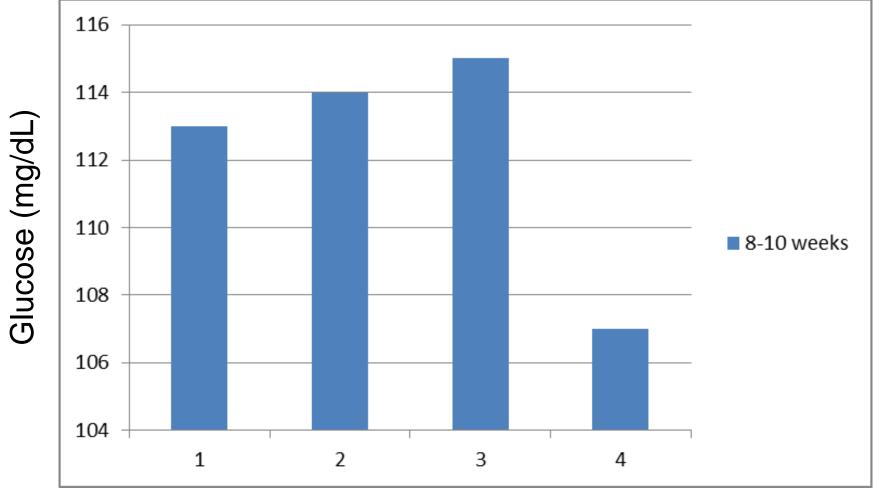
Lifecodes study data collection

Visit 1	Visit 2	Visit 3	Standard	Visit 4	Delivery
(8-10 wks)	(16-18 wks)	(22-26	clinical care	(33-35	
		wks)	(24-28 wks)	wks)	
Blood, Urine, Survey, Diagnoses,		50 gram	Blood,	Labor and	
	Weight, a	and Height	glucose load	Urine,	delivery
			testing and/or	Survey,	records
			100-gram oral	Diagnoses,	
			glucose	Weight,	
			tolerance test	Height	
			for diagnosis of		
			GDM		


Statistical Analysis

- For continuous glucose levels, multivariable generalized linear models were used
- Multivariable logistic regression was used for categorical glucose outcomes
- Maternal age, race/ethnicity, education, and family history of diabetes as potential confounders
- All values are age and specific gravity adjusted

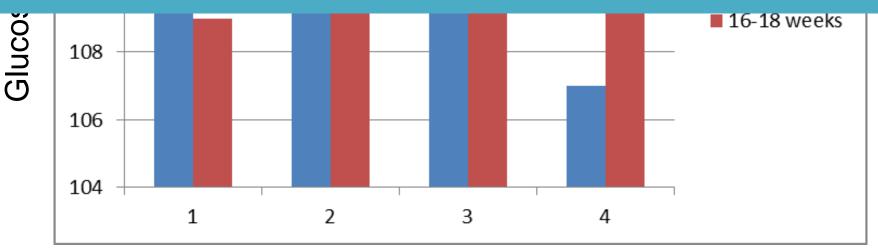
Lifecodes Pregnancy Cohort Study Population Characteristics (Controls-only, n=350)


Maternal age (mean (SD))	31.9 (5.5)
Maternal BMI kg/m ² (mean(SD))	25.9 (5.7)
Baseline weight in kg (mean(SD))	70.4 (15.7)
Education (%)	
<hs< td=""><td>13.4</td></hs<>	13.4
Technical school/Some college	43.5
<u>></u> College	43.1
Ever smoking (%)	5.4
Current	23.1
Past	2.3
Family history of diabetes	45.1

Phthalates across pregnancy

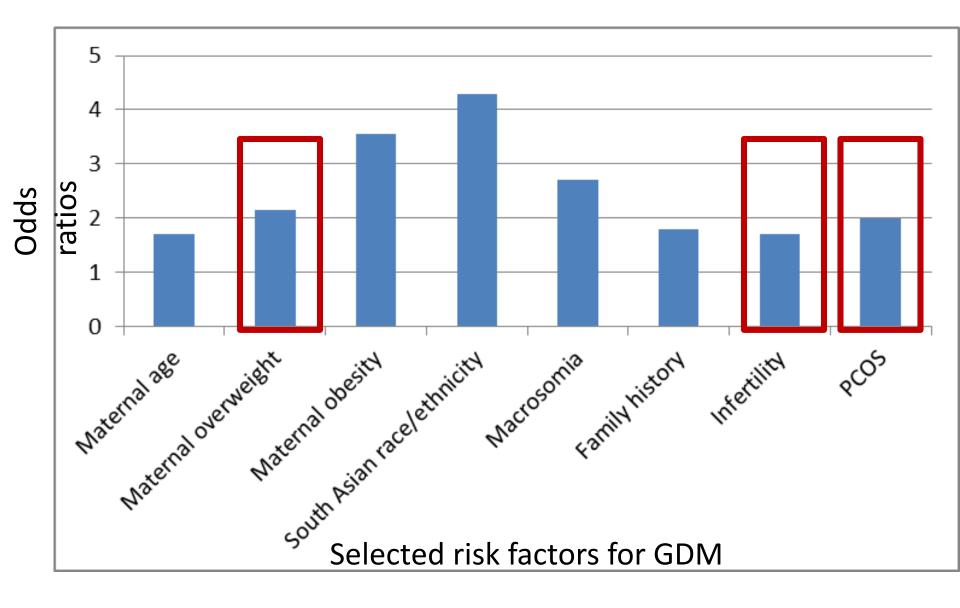
James-Todd et al, JESEE 2016

Phthalates and second trimester blood glucose


MEP

James-Todd et al, Env. Int. 2016

Phthalates and second trimester blood glucose


Over a 7x increased odds of having a glucose challenge test value > 140mg/dL among women in the highest compared to lowest MEP concentrations

MEP

James-Todd et al, Env. Int. 2016

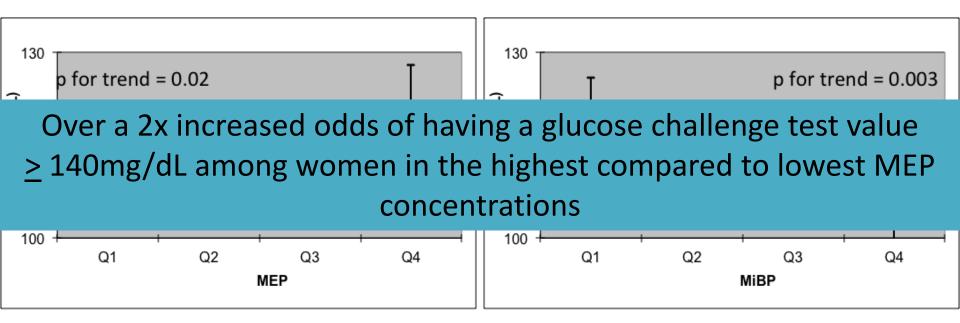
What about high-risk groups?

Environment and Reproductive Health (EARTH) study

- Prospective cohort study
- Women (and men) recruited since 2004 from Massachusetts General Hospital (MGH) Fertility Center (Boston, MA)
- A total of 246 women had available data on urinary phthalate metabolite concentrations from the 1st and 2nd trimesters (437 urine samples) and glucose data.

EARTH study: overview of data collection

Preconception	1 st Trimester	2 nd Trimester	3 rd Trimester	Standard clinical care (24-28 wks)
Blood, Urine, Questionnaires, Diagnoses, Weight, and				-
			Height	glucose load
				testing and/or
				100-gram oral
				glucose
				tolerance test
				for diagnosis of
				GDM



EARTH study population characteristics

Maternal	N=246		
characteristics			
Mean maternal age	35 (3.8)		
BMI >25kg/m ²	74%		
White	87%		
>College graduate	88%		
Family history of	12%		
diabetes			
Infertility diagnosis			
IVF	56%		
IUI	22%		
Natural	22%		
Multiples	19%		
Glucose >140mg/dL	18%		

Phthalate metabolite concentrations in 2nd trimester and glucose levels

Adjusted for maternal age, race/ethnicity, education, BMI, smoking status, infertility diagnosis, family history of diabetes, and number of fetuses

Strengths and limitations

Strengths:

- Prospective cohort design
- Assessed phthalate exposure at two time points
- Assessed in average and higher risk populations

Limitations:

- Urinary phthalate metabolites were evaluated in spot urines
- We did not assess overt GDM
- Higher risk women were those with a history of infertility for a variety of reasons

Conclusions and implications

- 2nd trimester exposure to diethyl phthalate, the parent compound of MEP--commonly used in personal care products, associated with increased glucose levels during pregnancy
- On the other hand, 2nd trimester exposure to MiBP was associated lower glucose levels during pregnancy
- 2nd trimester may be a more sensitive period for phthalate exposure as it relates to glucose dysregulation in pregnancy

Search engine for environmental exposures in epidemiological research

Examples of social factors:

- Sociodemographics
- Behavioral
- Residential
- Gender
- Stress
- Occupation

Examples of biological data:

- Blood
- Urine
- Semen
- Follicular fluid
- Placenta
- Cord blood
- Breast milk

Examples of health outcomes:

- Medical history
- Anthropometry
- Pregnancy complications
- Delivery outcomes
- Postpartum health
- Chronic disease

Data linkage issues are important to consider!

Next steps: Building a search engine for environmental exposures

Research

Clinical care

Policy

Acknowledgements

Lifecodes Study Team:

- Tom McElrath, MD, PhD
- Ellen Seely, MD
- Janet Rich-Edwards, ScD, MPH
- John Meeker, PhD
- Kelly Ferguson, PhD
- Tianyi Huang, ScD, MPH
- David Cantonwine, PhD

Funding:

- NIH R01ES026166, R01ES022955, R01ES009718, P30ES000002, K12HD051959
- American Diabetes Association

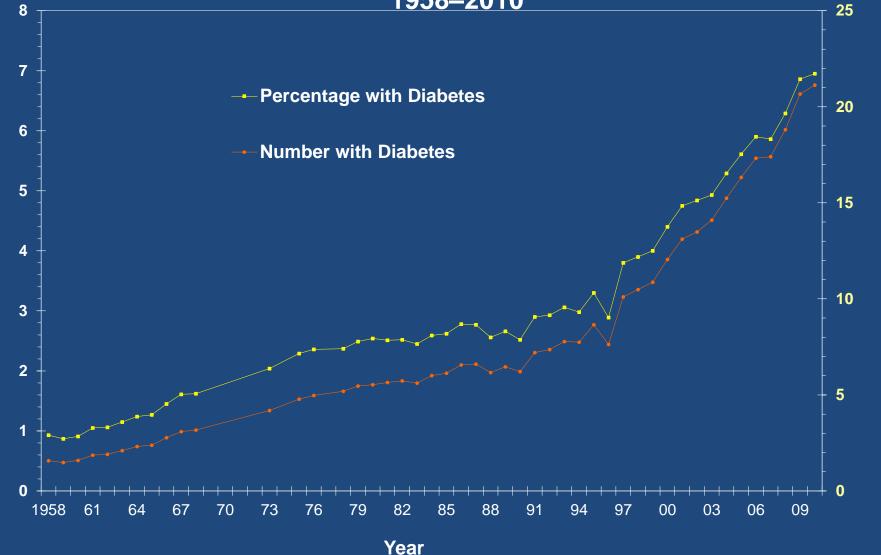
EARTH Study Team:

- Russ Hauser, MD, ScD
- John Petrozza, MD
- Yu-Han Chiu, MD, MPH
- Carmen Messerlian, PhD
- Lidia Mínguez-Alarcón
- Jennifer Ford, RN
- Myra Keller, RN
- Paige Williams, PhD, MS
- Antonia Calafat, PhD
- Xiaoyun (Sherry) Ye, MS

Questions?

Types of EDCs

Half-life=Amount of time it takes for 50% of the chemical to leave your body


Persistent

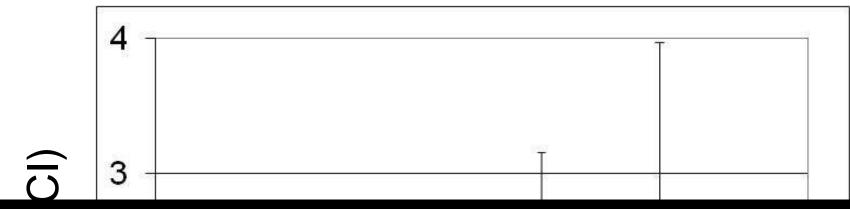
- Persist in the environment, bioaccumulate through the food web over the course of years
- Examples:
 - PCBs
 - DDT
 - Dioxins

Non-persistent

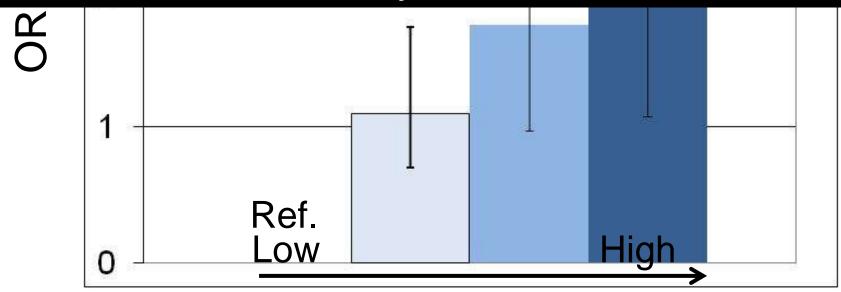
- Rapidly excreted within hours or days
- Only recently considered to impact human health
- Examples:
 - Bisphenol A
 - Phthalates

Number and Percentage of U.S. Population with Diagnosed Diabetes, 1958–2010

CDC's Division of Diabetes Translation. National Diabetes Surveillance System available at http://www.cdc.gov/diabetes/statistics

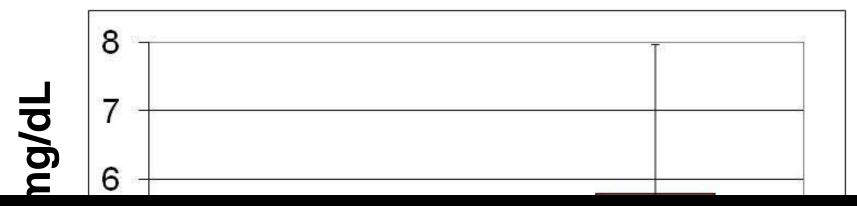

Percentage with Diabetes

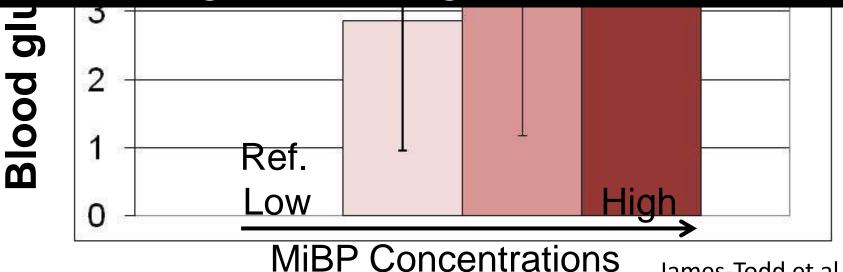
Phthalates & Women's Health


Higher phthalate concentrations are associated with:

- Reproductive outcomes:
 - Premature breast development
 - Fibroids
 - Endometriosis
- Diabetes-related outcomes:
 - Obesity
 - Insulin resistance
 - High blood sugar

Phthalates and diabetes in women


Women with the highest levels of phthalates were 2x likely to have diabetes

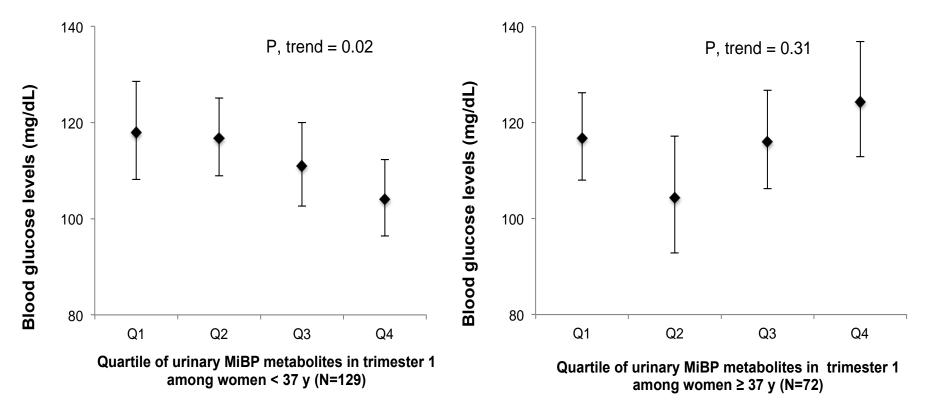

MiBP Concentrations

James-Todd et al, 2012

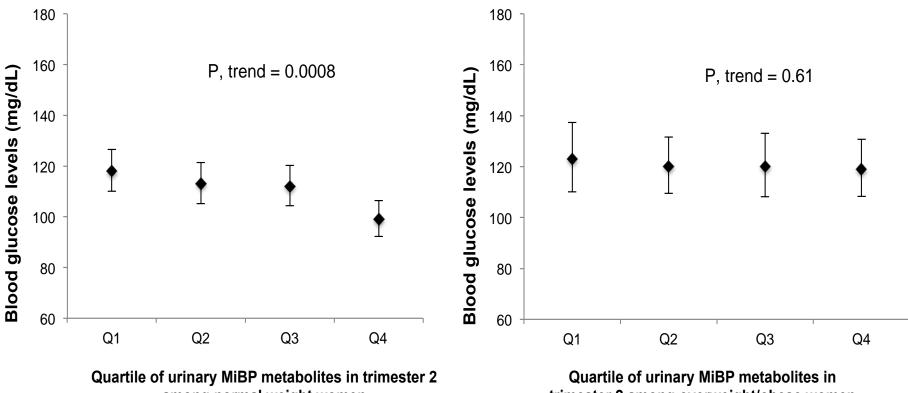
Phthalates and blood glucose in women

Among women without diabetes, women with the highest levels of phthalates had higher blood glucose levels

James-Todd et al, 2012


Reproducibility of phthalate metabolite levels across pregnancy

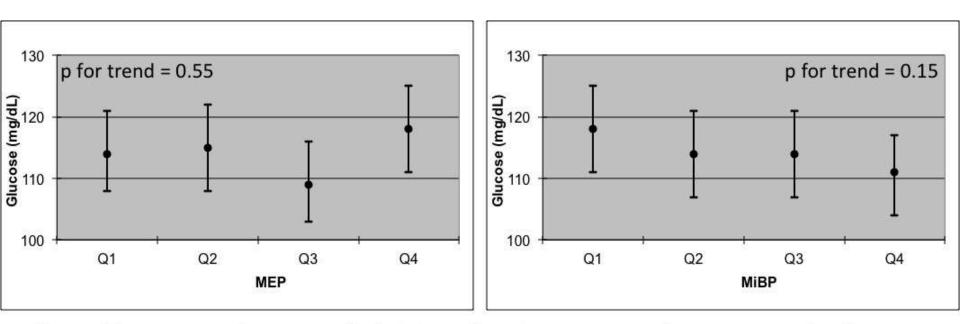
	Unadjusted	Adjusted for race	
	ICC (95% CI)		
MBP	0.45 (0.40, 0.51)	0.43 (0.38, 0.49)	
MEP	0.47 (0.41, 0.52)	0.45 (0.40, 0.51)	
MiBP	0.57 (0.52, 0.62)	0.55 (0.49, 0.60)	
MBzP	0.61 (0.56, 0.65)	0.58 (0.53, 0.63)	
MCPP	0.35 (0.29, 0.41)	0.35 (0.29, 0.41)	
MEHP	0.29 (0.23, 0.35)	0.29 (0.23, 0.35)	
∑DEHP metabolites	0.21 (0.15, 0.27)	0.21 (0.15, 0.27)	
∑DEHP oxidative metabolites	0.21 (0.16, 0.27)	0.21 (0.16, 0.27)	


EARTH: Phthalate metabolite concentrations by trimester

Phthalate metabolites	Trimester	N	Detection frequency ²	SG-adjusted concentrations	
				geometric (SD)	
Mep (ng/mL)	1	208	100%	43.6 (4.4)	
	2	209	100%	60.2 (6.1)	
Mbp (ng/mL)	1	208	99.5%	10.9 (0.6)	
	2	209	97.6%	11.8 (0.9)	
Mibp (ng/mL)	1	208	96.6%	5.7 (0.3)	
	2	209	97.6%	5.7 (0.4)	
Mbzp (ng/mL)	1	208	95.7%	3.0 (0.2)	
	2	209	91.9%	2.9 (0.2)	
Mcpp (ng/mL)	1	208	98.1%	4.9 (0.5)	
	2	209	96.7%	3.7 (0.3)	
Mcop (ng/mL)	1	192	97.9%	28.2 (2.9)	
	2	190	97.4%	21.9 (2.3)	
Mcnp (ng/mL)	1	192	93.2%	4.2 (0.3)	
	2	190	92.6%	3.5 (0.3)	
Dehp(nmol/mL)	1	208	3 7 1	0.2 (0.02)	
	2	209	-	0.1 (0.01)	

Phthalate metabolite concentrations and 2nd trimester glucose levels

2nd trimester MiBP and glucose levels by BMI status


among normal weight women

trimester 2 among overweight/obese women

Considerations for EDC exposure during pregnancy and beyond

- Timing
 - Pre-pregnancy
 - During pregnancy
 - Post-pregnancy
- Dose
 - Linear v. non-linear
- Biology
 - Temporary or permanent alterations to "normal" pancreatic function

Phthalate metabolite concentrations in 1st trimester and glucose levels

Adjusted for maternal age, race/ethnicity, education, BMI, smoking status, infertility diagnosis, family history of diabetes, and number of fetuses

Next steps: Building a search engine for environmental exposures

- What should we collect?
 - Environmental exposure data in the clinical setting
 - Biological samples and biorepositories
 - Behavioral and social environment matter
 - Maternal and paternal data
- How should we collect?
 - Checklist or other simplified tool
 - Linkage and long-term considerations

Who should collect this data?

- Training of medical workforce
- Patient education and reporting back

Reducing exposures to decrease risk?

How can we decrease exposure to phthalates?

Food & Beverage

- Common source of exposure to phthalates from processing and packaging materials that come into contact with foods and beverages.
- We can make food and beverage choices to reduce exposure.
 - Reduce use of processed and packaged foods
 - Increase use of fresh foods
 - Reduce storing and heating foods and beverages in plastic containers

Perfumes & Personal Care Products

- Phthalates may be found in some lotions, soaps, makeup, nail polish.
- Products with "fragrance" listed may contain phthalates.
 - Use "phthalate-free" lotions and soaps
 - Reduce use of products with "fragrance" by opting for "fragrance-free" choices
 - Use nail polish brands that advertise "No Di-Butyl Phthalate" or "No DBP"

Household Goods

- Flooring, blinds, shower curtains, electronics, and other PVC products can be a source of DEHP.
- Scented cleaning products, laundry detergent, synthetic air fresheners can contain phthalates.
 - Use PVC-free products: replace with cotton, bamboo or polyethylene vinyl acetate (PEVA)
 - Use "fragrance-free" cleaning and laundry products